Nuclear lamins: key regulators of nuclear structure and activities

نویسندگان

  • Miron Prokocimer
  • Maya Davidovich
  • Malka Nissim-Rafinia
  • Naama Wiesel-Motiuk
  • Daniel Z Bar
  • Rachel Barkan
  • Eran Meshorer
  • Yosef Gruenbaum
چکیده

The nuclear lamina is a proteinaceous structure located underneath the inner nuclear membrane (INM), where it associates with the peripheral chromatin. It contains lamins and lamin-associated proteins, including many integral proteins of the INM, chromatin modifying proteins, transcriptional repressors and structural proteins. A fraction of lamins is also present in the nucleoplasm, where it forms stable complexes and is associated with specific nucleoplasmic proteins. The lamins and their associated proteins are required for most nuclear activities, mitosis and for linking the nucleoplasm to all major cytoskeletal networks in the cytoplasm. Mutations in nuclear lamins and their associated proteins cause about 20 different diseases that are collectively called laminopathies'. This review concentrates mainly on lamins, their structure and their roles in DNA replication, chromatin organization, adult stem cell differentiation, aging, tumorogenesis and the lamin mutations leading to laminopathic diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers

Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuc...

متن کامل

Lamins: 'structure goes cycling'.

Nuclear intermediate filaments formed by A- and B-type lamins are central components of the nucleoskeleton and are required for the architecture and integrity of the nucleus. There is growing evidence that lamins are also involved in regulatory pathways controlling cell proliferation and differentiation. Lamins affect the activity of several transcription factors, such as retinoblastoma protein...

متن کامل

Defective DNA-damage repair induced by nuclear lamina dysfunction is a key mediator of smooth muscle cell aging.

Accumulation of DNA damage is a major driving force of normal cellular aging and has recently been demonstrated to hasten the development of vascular diseases such as atherosclerosis. VSMCs (vascular smooth muscle cells) are essential for vessel wall integrity and repair, and maintenance of their proliferative capacity is essential for vascular health. The signalling pathways that determine VSM...

متن کامل

Lamins at the crossroads of mechanosignaling.

The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulatio...

متن کامل

Lamin B1 is required for mouse development and nuclear integrity.

Lamins are key structural components of the nuclear lamina, an intermediate filament meshwork that lies beneath the inner nuclear membrane. Lamins play a role in nuclear architecture, DNA replication, and gene expression. Mutations affecting A-type lamins have been associated with a variety of human diseases, including muscular dystrophy, cardiomyopathy, lipodystrophy, and progeria, but mutatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009